10 research outputs found

    A neurovascular high-frequency optical coherence tomography system enables in situ cerebrovascular volumetric microscopy

    Get PDF
    Intravascular imaging has emerged as a valuable tool for the treatment of coronary and peripheral artery disease; however, no solution is available for safe and reliable use in the tortuous vascular anatomy of the brain. Endovascular treatment of stroke is delivered under image guidance with insufficient resolution to adequately assess underlying arterial pathology and therapeutic devices. High-resolution imaging, enabling surgeons to visualize cerebral arteries\u27 microstructure and micron-level features of neurovascular devices, would have a profound impact in the research, diagnosis, and treatment of cerebrovascular diseases. Here, we present a neurovascular high-frequency optical coherence tomography (HF-OCT) system, including an imaging console and an endoscopic probe designed to rapidly acquire volumetric microscopy data at a resolution approaching 10 microns in tortuous cerebrovascular anatomies. Using a combination of in vitro, ex vivo, and in vivo models, the feasibility of HF-OCT for cerebrovascular imaging was demonstrated

    Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?

    No full text
    Alcohol-induced congenital heart defects are frequently among the most life threatening and require surgical correction in newborns. The etiology of these defects, collectively known as fetal alcohol syndrome, has been the focus of much study, particularly involving cellular and molecular mechanisms. Few studies have addressed the influential role of altered cardiac function in early embryogenesis because of a lack of tools with the capability to assay tiny beating hearts. To overcome this gap in our understanding, we used optical coherence tomography (OCT), a nondestructive imaging modality capable of micrometer-scale resolution imaging, to rapidly and accurately map cardiovascular structure and hemodynamics in real time under physiological conditions. In this study, we exposed avian embryos to a single dose of alcohol/ethanol at gastrulation when the embryo is sensitive to the induction of birth defects. Late-stage hearts were analyzed using standard histological analysis with a focus on the atrio-ventricular valves. Early cardiac function was assayed using Doppler OCT, and structural analysis of the cardiac cushions was performed using OCT imaging. Our results indicated that ethanol-exposed embryos developed late-stage valvuloseptal defects. At early stages, they exhibited increased regurgitant flow and developed smaller atrio-ventricular cardiac cushions, compared with controls (uninjected and saline-injected embryos). The embryos also exhibited abnormal flexion/torsion of the body. Our evidence suggests that ethanol-induced alterations in early cardiac function have the potential to contribute to late-stage valve and septal defects, thus demonstrating that functional parameters may serve as early and sensitive gauges of cardiac normalcy and abnormalities

    Ethanol exposure alters early cardiac function in the looping heart: a mechanism for congenital heart defects?

    No full text
    Alcohol-induced congenital heart defects are frequently among the most life threatening and require surgical correction in newborns. The etiology of these defects, collectively known as fetal alcohol syndrome, has been the focus of much study, particularly involving cellular and molecular mechanisms. Few studies have addressed the influential role of altered cardiac function in early embryogenesis because of a lack of tools with the capability to assay tiny beating hearts. To overcome this gap in our understanding, we used optical coherence tomography (OCT), a nondestructive imaging modality capable of micrometer-scale resolution imaging, to rapidly and accurately map cardiovascular structure and hemodynamics in real time under physiological conditions. In this study, we exposed avian embryos to a single dose of alcohol/ethanol at gastrulation when the embryo is sensitive to the induction of birth defects. Late-stage hearts were analyzed using standard histological analysis with a focus on the atrio-ventricular valves. Early cardiac function was assayed using Doppler OCT, and structural analysis of the cardiac cushions was performed using OCT imaging. Our results indicated that ethanol-exposed embryos developed late-stage valvuloseptal defects. At early stages, they exhibited increased regurgitant flow and developed smaller atrio-ventricular cardiac cushions, compared with controls (uninjected and saline-injected embryos). The embryos also exhibited abnormal flexion/torsion of the body. Our evidence suggests that ethanol-induced alterations in early cardiac function have the potential to contribute to late-stage valve and septal defects, thus demonstrating that functional parameters may serve as early and sensitive gauges of cardiac normalcy and abnormalities

    High-resolution image-guided WEB aneurysm embolization by high-frequency optical coherence tomography

    No full text
    BACKGROUND: High-frequency optical coherence tomography (HF-OCT) is an intra-vascular imaging technique capable of assessing device-vessel interactions at spatial resolution approaching 10 microm. We tested the hypothesis that adequately deployed Woven EndoBridge (WEB) devices as visualized by HF-OCT lead to higher aneurysm occlusion rates. METHODS: In a leporine model, elastase-induced aneurysms (n=24) were treated with the WEB device. HF-OCT and digital subtraction angiography (DSA) were performed following WEB deployment and repeated at 4, 8, and 12 weeks. Protrusion (0-present, 1-absent) and malapposition (0-malapposed, 1-neck apposition \u3e 50%) were binary coded. A device was considered \u27adequately deployed\u27 by HF-OCT and DSA if apposed and non-protruding. Aneurysm healing on DSA was reported using the 4-point WEB occlusion score: A or B grades were considered positive outcome. Neointimal coverage was quantified on HF-OCT images at 12 weeks and compared with scanning electron microscopy (SEM). RESULTS: Adequate deployment on HF-OCT correlated with positive outcome (P=0.007), but no statistically significant relationship was found between good outcome and adequate deployment on DSA (P=0.289). Absence of protrusion on HF-OCT correlated with a positive outcome (P=0.006); however, malapposition alone had no significant relationship (P=0.19). HF-OCT showed a strong correlation with SEM for the assessment of areas of neointimal tissue (R(2)=0.96; P \u3c 0.001). More neointimal coverage of 78%+/-32% was found on \u27adequate deployment\u27 cases versus 31%+/-24% for the \u27inadequate deployment\u27 cases (P=0.001). CONCLUSION: HF-OCT visualizes features that can determine adequate device deployment to prognosticate early aneurysm occlusion following WEB implantation and can be used to longitudinally monitor aneurysm healing progression

    A neurovascular high-frequency optical coherence tomography system enables in situ cerebrovascular volumetric microscopy

    No full text
    Intravascular imaging has emerged as a valuable tool for the treatment of coronary and peripheral artery disease; however, no solution is available for safe and reliable use in the tortuous vascular anatomy of the brain. Endovascular treatment of stroke is delivered under image guidance with insufficient resolution to adequately assess underlying arterial pathology and therapeutic devices. High-resolution imaging, enabling surgeons to visualize cerebral arteries\u27 microstructure and micron-level features of neurovascular devices, would have a profound impact in the research, diagnosis, and treatment of cerebrovascular diseases. Here, we present a neurovascular high-frequency optical coherence tomography (HF-OCT) system, including an imaging console and an endoscopic probe designed to rapidly acquire volumetric microscopy data at a resolution approaching 10 microns in tortuous cerebrovascular anatomies. Using a combination of in vitro, ex vivo, and in vivo models, the feasibility of HF-OCT for cerebrovascular imaging was demonstrated

    A Comparative Study of Conventional Mammography Film Interpretations with Soft Copy Readings of the Same Examinations

    No full text
    An acceptable mammography film digitizer must provide high-quality images at a level of diagnostic accuracy comparable to reading conventional film examinations. The purpose of this study was to determine if there are significant differences between the interpretations of conventional film-screen mammography examinations and soft copy readings of the images produced by a mammography film digitizer. Eight radiologists interpreted 120 mammography examinations, half as original films and the other half as digital images on a soft copy work station. No radiologist read the same examination twice. The interpretations were recorded in accordance with the Breast Imaging Reporting and Data System and included other variables such as perceived image quality and diagnostic difficulty and confidence. The results provide support for the hypothesis that there are no significant differences between the interpretations of conventional film-screen mammography examinations and soft copy examinations produced by a mammography film digitizer
    corecore